1∫0x(x2−2)2dx
(x2−2)2=x4−2x2−2x2+4
=x4−4x2+4
x(x2−2)2=x(x4−4x2+4)
=x5−4x3+4x
1∫0x(x2−2)2dx=1∫0x5−4x3+4xdx
=(x66−x4+2x2)01
= ((1)66−(1)4+2(1)2)−((0)66−(0)4+2(0)2)
=76−0=76
∴116